M-8880 Datasheet PDF - Clare Inc.

www.Datasheet-PDF.com

M-8880
Clare Inc.

Part Number M-8880
Description M-8880 DTMF Transceiver
Page 13 Pages


M-8880 datasheet pdf
Download PDF
M-8880 pdf
View PDF for Mobile


No Preview Available !

M-8880 DTMF Transceiver
· Advanced CMOS technology for low power consump-
tion and increased noise immunity
· Complete DTMF transmitter/receiver in a single chip
· Standard 6500/6800 series microprocessor port
· Central office quality and performance
· Adjustable guard time
· Automatic tone burst mode
· Call progress mode
· Single +5 Volt power supply
· 20-pin DIP and SOIC packages
· 2 MHz microprocessor port operation
· Inexpensive 3.58 MHz crystal
· No continuous f2 clock required, only strobe
· Applications include: paging systems, repeater sys-
tems/mobile radio, interconnect dialers, PBX systems,
computer systems, fax machines, pay telephones,
credit card verification
The M-8880 is a complete DTMF Transmitter/Receiver that fea-
tures adjustable guard time, automatic tone burst mode, call
progress mode, and a fully compatible 6500/6800 microproces-
sor interface. The receiver portion is based on the industry stan-
dard M-8870 DTMF Receiver, while the transmitter uses a
switched-capacitor digital-to-analog converter for
low-distortion, highly accurate DTMF signaling. Tone bursts can
be transmitted with precise timing by making use of the auto-
matic tone burst mode. To analyze call progress tones, a call
progress filter can be selected by an external microprocessor.
Figure 1 Pin Diagram
Functional Description
M-8880 functions consist of a high-performance DTMF receiver
with an internal gain setting amplifier and a DTMF generator that
contains a tone burst counter for generating precise tone bursts
and pauses. The call progress mode, when selected, allows the
detection of call progress tones. A standard 6500/6800 series
microprocessor interface allows access to an internal status
register, two control registers, and two data registers.
Input Configuration
The input arrangement consists of a differential input opera-
tional amplifier and bias sources (VREF) for biasing the amplifier
inputs at VDD/2. Provisions are made for the connection of a
feedback resistor to the op-amp output (GS) for gain adjust-
40-406-00012, Rev. G
Figure 2 Block Diagram
Page 1
www.clare.com



No Preview Available !

M-8880
Figure 3 Single-Ended Input Configuration
Figure 4 Differential Input Configuration
ment. In a single-ended configuration, the input pins should be
connected as shown in Figure 3. Figure 4 shows the necessary
connections for a differential input configuration.
Receiver Section
The low and high group tones are separated by applying the
DTMF signal to the inputs of two sixth-order switched capacitor
bandpass filters with bandwidths that correspond to the low and
high group frequencies listed in Table 2. The low group filter in-
corporates notches at 350 and 440 Hz, providing excellent dial
tone rejection. Each filter output is followed by a single-order
switched capacitor filter that smooths the signals prior to limiting.
Limiting is performed by high-gain comparators with hysteresis
to prevent detection of unwanted low-level signals. The com-
parator outputs provide full-rail logic swings at the incoming
DTMF signal frequencies.
A decoder employs digital counting techniques to determine the
frequencies of the incoming tones, and to verify that they corre-
spond to standard DTMF frequencies. A complex averaging al-
gorithm protects against tone simulation by extraneous signals
(such as voice), while tolerating small deviations in frequency.
The algorithm provides an optimum combination of immunity to
talkoff with tolerance to interfering frequencies (third tones) and
noise. When the detector recognizes the presence of two valid
tones (referred to as “signal condition”), the early steering (ESt)
output goes to an active state. Any subsequent loss of signal
condition will cause ESt to assume an inactive state.
Steering Circuit: Before a decoded tone pair is registered, the
receiver checks for a valid signal duration (referred to as “char-
acter recognition condition”). This check is performed by an ex-
ternal RC time constant driven by ESt. A logic high on ESt
Table 1 Pin Functions
Name
IN+
IN-
GS
VREF
VSS
OSC1
OSC2
TONE
R/W
CS
RS0
φ2
IRQ/CP
D0 - D3
ESt
St/GT
VDD
Description
Noninverting op-amp input.
Inverting op-amp input.
Gain select. Gives access to output of front end differential amplifier for connection of feedback resistor.
Reference voltage output. Nominally VDD/2 is used to bias inputs at mid-rail.
Negative power supply input.
DTMF clock/oscillator input.
Clock output. A 3.5795 MHz crystal connected between OSC1 and OSC2 completes the internal oscillator circuit.
Dual tone multifrequency (DTMF) output.
Read/write input. Controls the direction of data transfer to and from the microprocessor and the receiver/transmitter. TTL
compatible.
Chip select. TTL input (CS = 0 to select the chip).
Register select input. See Table 6. TTL compatible.
System clock input. May be continuous or strobed only during read or write. TTL compatible.
Interrupt request to microprocessor (open-drain output). Also, when call progress (CP) mode has been selected and inter-
rupt enabled, the IRQ/CP pin will output a rectangular wave signal representative of the input signal applied at the input
op-amp. The input signal must be within the bandwidth limits of the call progress filter. See Figure 11
Microprocessor data bus. TTL compatible.
Early steering output. Presents a logic high once the digital algorithm has detected a valid tone pair (signal condition). Any
momentary loss of signal condition will cause ESt to return to a logic low.
Steering input/guard time output (bidirectional). A voltage greater than VTSt detected at St causes the device to register the
detected tone pair and update the output latch. A voltage less than VTSt frees the device to accept a new tone pair. The
GT output acts to reset the external steering time-constant; its state is a funciton of ESt and the voltage on St.
Positive power supply input.
40-406-00012, Rev. G
Page 2
www.clare.com



No Preview Available !

M-8880
causes VC (see Figure 5) to rise as the capacitor discharges.
Provided that the signal condition is maintained (ESt remains
high) for the validation period (tGTP), VC reaches the threshold
(VTSt) of the steering logic to register the tone pair, latching its
corresponding 4-bit code (see Table 2) into the receive data reg-
ister.
Table 2 Tone Encoding/Decoding
FLOW FHIGH Digit
D3
D2
D1
697 1209
1
0
0
0
697 1336
2
0
0
1
697 1477
3
0
0
1
770 1209
4
0
1
0
770 1336
5
0
1
0
770 1477
6
0
1
1
852 1209
7
0
1
1
852 1336
8
1
0
0
852 1477
9
1
0
0
941 1336
0
1
0
1
941 1209
*
1
0
1
941 1477
#
1
1
0
697 1633
A
1
1
0
770 1633
B
1
1
1
852 1633
C
1
1
1
941 1633
D
0
0
0
0 = logic low, 1 = logic high
D0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
At this point the StGT output is activated and drives VC to VDD.
StGT continues to drive high as long as ESt remains high.
Finally, after a short delay to allow the output latch to settle, the
delayed steering output flag goes high, signaling that a received
tone pair has been registered. It is possible to monitor the status
of the delayed steering flag by checking the appropriate bit in the
status register. If interrupt mode has been selected, the IRQ/CP
pin will pull low when the delayed steering flag is active.
The steering circuit works in reverse to validate the interdigit
pause between signals. Thus, as well as rejecting signals too
short to be considered valid, the receiver will tolerate signal in-
terruptions (dropout) too short to be considered a valid pause.
This capability, together with the ability to select the steering
time constants externally, allows the designer to tailor perfor-
mance to meet a wide variety of system requirements.
Guard Time Adjustment: The simple steering circuit shown in
Figure 5 is adequate for most applications. Component values
are chosen according to the formula:
tREC = tDP + tGTP
TID = tDA + tGTA
The value of tDP is a device parameter and tREC is the minimum
signal duration to be recognized by the receiver. A value for C1
of 0.1 µF is recommended for most applications, leaving R1 to
be selected by the designer. Different steering arrangements
may be used to select independently the guard times for tone
present (tGTP) and tone absent (tGTA). This may be necessary to
meet system specifications that place both accept and reject
limits on both tone duration and interdigit pause. Guard time ad-
justment also allows the designer to tailor system parameters
such as talkoff and noise immunity. Increasing tREC improves
talkoff performance since it reduces the probability that tones
simulated by speech will maintain signal condition long enough
to be registered. Alternatively, a relatively short tREC with a long
tDO would be appropriate for extremely noisy environments
where fast acquisition time and immunity to tone dropouts are
required. Design information for guard time adjustment is shown
in Figure 6.
Figure 5 Basic Steering Circuit
The contents of the output latch are updated on an active de-
layed steering transition. This data is presented to the 4-bit
bidirectional data bus when the receive data register is read.
Figure 6 Guard Time Adjustment
Call Progress Filter
A call progress (CP) mode can be selected, allowing the detec-
tion of various tones that identify the progress of a telephone call
on the network. The call progress tone input and DTMF input are
common; however, call progress tones can only be detected
when the CP mode has been selected. DTMF signals cannot be
40-406-00012, Rev. G
Page 3
www.clare.com



No Preview Available !

M-8880
detected if the CP mode has been selected (see Table 3). Fig-
ure 7 indicates the useful detect bandwidth of the call progress
filter. Frequencies presented to the input (IN+ and IN-) that are
within the “accept” bandwidth limits of the filter are hard-limited
by a high-gain comparator with the IRQ /CP pin serving as the
output. The square wave output obtained from the schmitt trig-
ger can be analyzed by a microprocessor or counter arrange-
ment to determine the nature of the call progress tone being
detected. Frequencies in the “reject” area will not be detected,
and consequently there will be no activity on IRQ /CP as a result
of these frequencies.
Figure 7 Call Progress Response
DTMF Generator
The DTMF transmitter used in the M-8880 is capable of generat-
ing all 16 standard DTMF tone pairs with low distortion and high
accuracy. All frequencies are derived from an external 3.58
MHz crystal. The sinusoidal waveforms for the individual tones
are digitally synthesized using row and column programmable
dividers and switched capacitor digital-to-analog converters.
The row and column tones are mixed and filtered, providing a
DTMF signal with low total harmonic distortion and high accu-
racy. To specify a DTMF signal, data conforming to the encod-
ing format shown in Table 2 must be written to the transmit data
register. Note that this is the same as the receiver output code.
The individual tones that are generated (fLOW and fHIGH) are re-
ferred to as low-group and high-group tones. Typically, the
high-group to low-group amplitude ratio (twist) is 2 dB to com-
pensate for high-group attenuation on long loops.
Operation: During write operations to the transmit data register,
4-bit data on the bus is latched and converted to a 2 of 8 code for
use by the programmable divider circuitry to specify a time seg-
ment length that will ultimately determine the tone frequency.
The number of time segments is fixed at 32, but the frequency is
varied by varying the segment length. When the divider reaches
the appropriate count as determined by the input code, a reset
pulse is issued and the counter starts again. The divider output
clocks another counter that addresses the sinewave lookup
ROM. The lookup table contains codes used by the switched
capacitor D/A converter to obtain discrete and highly accurate
DC voltage levels. Two identical circuits are used to produce
row and column tones, which are then mixed using a low-noise
summing amplifier. The oscillator described needs no “startup”
time as in other DTMF generators, since the crystal oscillator is
running continuously, thus providing a high degree of tone burst
accuracy. When there is no tone output signal, the TONE pin
assumes a DC level of 2.5 volts (typically). A bandwidth limiting
filter is incorporated to attenuate distortion products above 4
KHz.
Burst Mode: Certain telephony applications require that gener-
ated DTMF signals be of a specific duration, determined either
by the application or by any of the existing exchange transmitter
specifications. Standard DTMF signal timing can be accom-
plished by making use of the burst mode. The transmitter is ca-
pable of issuing symmetric bursts/pauses of predetermined
duration. This burst/pause duration is 51 ms ± 1 ms, a standard
interval for autodialer and central office applications. After the
burst/pause has been issued, the appropriate bit is set in the sta-
tus register, indicating that the transmitter is ready for more data.
The timing described is available when the DTMF mode has
been selected. However, when call progress (CP) mode is se-
lected, a secondary burst/pause time is available that extends
this interval to 102 ms ± 2 ms. The extended interval is useful
when precise tone bursts of longer than 51 ms duration and 51
ms pause are desired. Note that when CP mode and burst mode
have been selected, DTMF tones may be transmitted only and
not received. In applications requiring a nonstandard
burst/pause time, use a software timing loop or external timer.
This provides the timing pulses when the burst mode is disabled
by enabling and disabling the transmitter.
The M-8880 is initialized on powerup sequence with DTMF
mode and burst mode selected.
Single-Tone Generation: A single-tone mode is available
whereby individual tones from the low group or high group can
be generated. This mode can be used for DTMF test equipment
applications, acknowledgment tone generation, and distortion
measurements. Refer to Table 4 for details.
Distortion Calculations: The M-8880 is capable of producing
precise tone bursts with minimal error in frequency (see Table
3). The internal summing amplifier is followed by a first-order
low-pass switched capacitor filter to minimize harmonic compo-
nents and intermodulation products. The total harmonic distor-
tion for a single tone can be calculated using Equation 1, (see
Figure 9) which is the ratio of the total power of all the extrane-
ous frequencies to the power of the fundamental frequency ex-
pressed as a percentage. The Fourier components of the tone
output correspond to V2f... Vnf as measured on the output
waveform. The total harmonic distortion for a dual tone can be
calculated using Equation 2 (see Figure 9).
Table 3 Actual Frequencies vs. Standard
Requirements
Active
Cell
L1
L2
L3
L4
H1
H2
H3
H4
Output Frequency (Hz)
Specified
Actual
697 699.1
770 766.2
852 847.4
941 948.0
1209
1215.9
1336
1331.7
1447
1471.9
1633
1645.0
% Error
+ 0.30
- 0.49
- 0.54
+ 0.74
+ 0.57
- 0.32
- 0.35
+ 0.73
40-406-00012, Rev. G
Page 4
www.clare.com



M-8880 datasheet pdf
Download PDF
M-8880 pdf
View PDF for Mobile


Related : Start with M-888 Part Numbers by
M-8880 M-8880 DTMF Transceiver M-8880
Clare Inc.
M-8880 pdf
M-8888 DTMF Transceiver M-8888
Clare Inc.
M-8888 pdf
M-8888-01 DTMF Transceiver M-8888-01
Clare Inc.
M-8888-01 pdf
M-8888-01P DTMF Transceiver M-8888-01P
Clare Inc.
M-8888-01P pdf
M-8888-01SM DTMF Transceiver M-8888-01SM
Clare Inc.
M-8888-01SM pdf
M-8888-01T DTMF Transceiver M-8888-01T
Clare Inc.
M-8888-01T pdf

Index :   0   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z   

This is a individually operated, non profit site. If this site is good enough to show, please introduce this site to others.
Since 2010   ::   HOME   ::   Contact